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 ABSTRACT 

Spectral Theorem provides spectral decomposition, Eigen value decomposition 

of the underlying vector space on which the operator acts. Here, we have tried 

to work on the formulation of an operator explicitly, operator being self adjoint 

and compact defined on Hilbert space.  

INTRODUCTION 

Spectral Theory for a self adjoint operator is quite complicated. But it becomes 

easier if the operator at hand is compact. Consider on operator. T : H → H with 

H being a Hilbert space. The complete spectral decomposition of T can be stated 

in a quite elementary fashion. Spectral Theorem is a generalization of the 

familiar theorem from Linear algebra asserting that a self adjoint n x n matrix A 

can be diagnolized ,  there is a diagonal matrix D and unitary matrix U st.  

                                             A = UDU-1 

 In particular a compact self adjoint operator can be unitarily diagonalized. 

Actually, spectral theory is an inclusive term for theories extending the Eigen 

vector and Eigen value theory of single matrix to a much broader theory of 

operators in a variety of mathematical spaces.  

 This project is concerned with studying the “spectral representation of 

compact self adjoint operators. Here, we have tried to concentrate on both 
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finite dimensional spaces and infinite dimensional spaces. Although, the proofs 

for both the cases have been discussed in standard books, but we have tried to 

prove it with slightly different approach. The concept is relatively straight 

forward for operators on finite dimensional spaces but will require some 

modifications for operators on infinite dimensional spaces.  

 Here, we started with proving the existence of unit vector x0 of H with 

║Txo║ = ║ T║ . Then we proved the fact that T has an Eigen value ║ T║ or -║ T 

║, where T is a compact and self adjoint operator defined on Hilbert space H. 

Then we found the representation of T in the main proof.  

 For infinite dimensional spaces, we started with family of projections. We 

represented T in terms of Riemann Steiltjes Integral. Considering the fact that 

Eigen values of T can both be positive as well as negative. We discussed both 

the cases and concluded the result. But before going further, we shall require a 

few facts concerning the terms and definitions used in the Theorem , which are 

as follows 

Important Definitions 

1. Compact Operator : 

A Linear operator A: X → Y is said to be compact if the set  

Cl { Ax :║  x ║  1} is compact in Y.  

2. Self Adjoint Operator :  

A bounded operator A on a Hilbert space H is said to be self adjoint if A٭ = 

A, where A٭ is adjoint of A.  
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3. Kernel of an Operator : 

 If A : X → Y b a Linear operator then  

 N (A) = { x  X : Ax = 0} is called kernel of A or null space  of  A.  

4. Eigen Spectrum: The set of all Eigen values of A is called Eigen spectrum of 

A. It is denoted by σeig (A) that is  

σeig  (A) = [K :  x  0 st A x = x]   

a)  <  and E  E implies  EE = E E = E 

b) Lt  Ex = 0 as λ→-∞ 

c) Lt  Eλx = x as λ→∞ 

5. Orthonormal sequence : 

A sequence < xn> is X is said to be orthonormal sequence whose terms 

form an orthonormal set i.e it follows two conditions :  

a)  x, y  X ,  < x, y > = 0  

b)  x  X , < x, y>  = 1  

6. Weakly convergent sequence  

A sequence < xn > in X is said to coverge to an element 

 x  X if f (xn)  f (x) as n → ∞ for every f ЄX’  

written as xn  x weakly. 
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7. Reflexive normed space :  

A normed linear space X is said to be reflexive if the canonical Isometry J : 

X →X’’ defined by (Jx) f = f (x)  

 x  X, f  X’ is surjective.  

8. Separable space : 

       A metric space is said to be separable if it has a  countable dense subset. 

9. Projection:  A linear operator P : X  X is called a projection operator or 

simple projection if Px = x  x Є  R(P) 

 SPECTRAL THEOREM 

Here, we will discuss the spectral theorem of compact self adjoint operators. 

Firstly, we will give statement of the theorem.  For proving the theorem, we 

require some additional results which will be discussed in the subsequent 

sections.  

Statement of Theorem: 

Let T : HH be a compact and self  adjoint operator on a Hilbert space H. Then 

there is a finite or infinite sequence {λn}n =
N

1  (nЄ Z+ Or N = ∞) of real eigen 

values λn0 and a corresponding orthonormal sequence  {en}n
N

=1
  in H  

such that   

(a) Ten = λnen  n with 1 n  N 

(b) N(T) = span({en}n=1
N 
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(c) if N =∞ then λn  =0 as n→∞ 

Before going further, we will prove some very important results for the theorem 
which are given in the form of lemma: 

  

2.1 Some Important Results 

Lemma 1: If X be a reflexive normed space and X is separable. Then every 

bounded sequence <xn> in X has a subsequence which is weakly convergent. 

Proof : Let < xn > be a bounded sequence in X.  

  a +ve  number B s.t ║ xn ║   B  n.  

Now   X’ is separable,   a countable dense subset of X’  

Let that set be { f1, f2, ....... }  

Now | f1 (xj)|  ║ f1 ║║ xj║  ║ f1║ B ,   j 

Which implies < f1 (xj)> is a bounded sequence.  

 Hence by Bolzano Weirstrass Theorem , every bounded sequence has a 

convergent subsequence, that is,  a subsequence <x1,j> of <xj>  

Lt <f1 (x1 y)> exists as j→∞.  

 <f1 (x1,j) > is convergent and hence bounded.  

Again applying the above argument,  a sub sequence ‹x2,j> of <x1,j> such that 

<f2 (x2,j)> is covergent. This argument is repeated to form sequence‹ x3,,j› <x4,j> 
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....... which are successive subsequences of each other. Finally let ym › = xm,m and 

Let <ym> be the ‘diagonol sequence’  m  1  

Now, <ym> is a subsequence of <xj>  

and  Lt fn (ym) exists  as m→∞ for all n 1 

Let Lt fn(ym) = f where fє X’ 

For a given  > 0, we can write ║fn – f║ < 
∈

10𝐵
 

i.e.  < fn (ym)> is convergent and hence a cauchy’s sequence.  

 sequence < fn (yk) >k
∞

=1  is a cauchy’s sequence.  

 for a given  > 0 we can find k 1  

|| fn (yk) – fn (yk’) || < 
∈

10
  k, k’ K. 

Consider,  

| f(yk) – f (yk
’)  = | f(yk) – fn(yk) + fn (yk) – fn(yk

’) + fn (yk
’) – f(yk

’)│  

= | (f-fn) (yk) + (fn(yk) – fn (yk
’)) + (fn-f) (yk

’) | 

 | (f-fn) (yk) | + | fn(yk) – fn (yk
’) | + | (fn-f) (yk

’)| 

 ║f-fn║ ║yk ║+ 
∈

10
 + ║ f – fn║║yk

’║ 

 
∈

10𝐵
 B + 

∈

10
 + 

∈

10𝐵
 B <  

 | f (yk) – f (yk
’) | <   k, k’  K 
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 < f (yk) > is a cauchy’s sequence.  

Limit exists and suppose Lt f(yk)= g(f) as k→∞ 

Then g is a map s.t g: X’ K is Linear map  

and │g (f) │=Lt │ f (yk)│   Lt Sup ║ f ║  ║yk║  B. ║f ║ 

i.e. │g (f)│  B ║ f║  g is bounded linear functional , g  X’’ and ║g║ B.  

Now since X is reflexive,  x X s.t g = gX 

where gx (f) = f (x)  f  X’  

Hence f (x) = gx (f) = g (f) =  Lt f(yk) as k→∞ 

i.e Lt f (yk) = f (x) as k→∞ 

ic  a subsequence < yk> of sequence <xn> in X which is weakly convergent.   

Lemma 2: If T : H H be compact and self adjoint operator on Hilbert Space H. 

Then T has an eigen vector with eigen value ║T ║ or   -║ T║ 

Proof   : Let us suppose λ =║ T ║ 

 Let  >0, Because if  ║T ║ = =0  T = 0 

 So, we suppose any Y H - {0} is an eigen vector  

 By Lemma 2, there is a point x0 S1 s.t   ║ Tx0 ║ = λ 

Now   , because T is self adjont, we have  

<T2 x0, x0> = <Tx0, T*x0> = <Tx0, Tx0> =  ║Tx0║2 ---- ** 
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Again,   By Cauchy’s Schwarz Inequality  

│<T2x0, x0> │   ║T2 x0 ║║ x0   ║ T2 ║.1 ║ T ║2 = λ2--- *** 

Combining ** and ***, There should be equality in ***. Because equality in 

Cauchy’s schwarz is possible only if two vectors are   linearly dependent . 

 T2x0 and x0 are dependent and Let T2x0 = x0,  Єk 

Again,<T2x0,x0> =<αx0,x0> = α<x0,x0> =α ,Here x0Є S1………**** 

Combining *** and**** , α=λ2 

 we have T2x0 = αx0 = 2x0 

Adding Tx0 on both sides 

T2x0 + Tx0 = 2x0 +Tx0 

T (x0+Tx0) =  (x0+Tx0) 

Again consider T2x0 = 2x0  - T2x0= -λ2x0 

Adding   Tλx0   on both sides, we get  

 T (x0- Tx0 ) = -  (x0- Tx0) 

We have T (x0 +Tx0) =  (x0+Tx0) 

 and T (x0-Tx0) = - (x0-Txo) 

This implies  if xo+Txo 0 then x0 + Tx0 is eigen vector of T with eigen value λ 

and xo-Txo 0 then xo-Txo is eigen vector of T with eigen  value – λ 
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 Sum of   two vector = 2λxo  0 

 Hence, at least  one of the vectors  must be non  zero. 

 There is an eigen vector with eigen value λ or an eigen vector with eigen 

value – λ. 

Lemma 3: Let T : H  H be a bounded self adjoint operator on a    Hilbert 

space H. and Let Y  H, be a subspace 

 s.t T(Y)   Y. Then T(Y┴)  Y┴ and T│y
 : Y  Y is a bounded self adjont   

operator on  Hilbert space Y with norm  

 ║ Ty║    ║T ║ 

Proof: Let  z Y  and yY  T(y)  T(Y)  Y 

 z Y   and T(y)  Y 

Consider <Tz,y> = <z,T*y>= <z, Ty> = 0 

 because Z Y  and Ty  Y 

 Tz and y are orthogonal ie Tz y Y  Tz Y  (*) 

Now, we have to prove T(Y)  Y 

Because, Z  Y ,it implies  T(z)  T (Y)  

But Tz  Y (By *)  

 T (Y)  Y┴   Remaining results are obvious  
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     Proof of the Theorem  

 In this section , we start with finding eigen vectors and then restrict the 

attention to the orthogonal complement of this set of vectors and then prove 

the required result as given here. We have taken the analogy between the 

spectral theory of operators on Hilbert spaces and that of operators on finite 

dimensional spaces about as far as it will go without requiring serious 

modifications. 

         Firstly, Let us suppose T = 0, then the theorem is trivial.  

So, suppose T  0,  Then by Lemma 3, there is an Eigen vector e1 with Eigen 

value such that 

1 = ║ T ║ or 1 = - ║ T ║. Since T  0, we have 1  0  

Let us assume ║ e1 ║  = 1  

Let H1 = span {e1} Then by Lemma 4, the restriction map T│H1 is a self adjoint 

operator on H1 and ║ T│H1|  ║  ║ T ║ =  

If T│H1 = 0, then we stop here. If not, we repeat the above process. After n-1 

steps, we found an orthonormal sequence of Eigen vectors e1, e2, ...... en-1 in H 

with corresponding real Eigen values 1, 2 .... n-1 s .t.  

 | 1 |  | 2 |  .................  | n-1 | > 0  

Let Hn-1  = span {e1, e2 .... en-1}┴
 then T│H n-1  is a self adjoint operator defined on 

Hn-1 and ║ TIH n-1 ║  |n-1 |  

Now if T│Hn-1 = 0, then we stop after this step.  
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and if T│Hn-1  0, we continue to nth step and again apply Lemma 3, we find an 

Eigen vector en Hn-1 with eigen value n =  ║ T│Hn-1 ║  

or n = - ║ T│Hn-1║. Here, we have | n |  | n-1|. Let us assume  ║en ║ = 1  

Because en  Hn-1 = span { e1, e2 ... en -1 } We have  

< en, ek > = 0 for k = 1, 2, .. n -1 i.e. e1, e2, ... en is an orthonormal sequence.  

Let Hn = span {e1, e2 ... en}. Then again by lemma 4, the restriction map T│Hn is 

self adjoint operator on Hn  

since, Hn Hn-1 , We have ║ T│Hn║    ║T│.Hn-1║ = | n |. which is the same 

situation as above. 

 Now, if the process stops after step N, we have T│HN = 0  

This implies, span ({en}N
n=1) = HN  N (T) …………….(a) 

Again if x  N (T)   Tx = 0  

for Each n, n <en, x> = < nen, x> = <Ten, x> = <en, Tx> 

 = <en, o> = 0 

i.e. n < en, x> = 0   x  en  

  x  span ({en}N
n=1) ……………………………(b) 

combining (a) and (b), N (T) = span ({en}N
n=1)  

Now, if the process never steps, we obtain an infinite sequence {n}  of real non 

–zero eigen values with  
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 1    2  .... and a corresponding orthonormal sequence   {en}∞
n=1 of eigen  

vectors s.t. Ten = n en  n1. 

 Now, because T is compact and {en} bounded and hence bounded 

sequence has a convergent subsequence. ie   a subsequence  1 n1 <n2 < ........ 

S.t <Tenj> converges in H as j ∞.  

  Tenj –Tenj’→ 0 as j,j’  ∞ ………………… ( 1) 

 But Tenj = nj enj and these vectors are mutually orthogonal for distinct j’s. 

Hence by Pythagoras formula,. we have  j< j’ 

 Tenj – Tenj 2 =  nj enj 2 +  ║nj enj’  ║2 

 = ║ nj ║2 + ║ nj’ ║2………………………………………………….(2) 

Combining  (1) and (2) Lt  | nj |2 = 0 as j→∞ , 

 since | 1|  │ 2 | > …......                                                              

 full sequence < n > converges to ‘0’ which is third condition of the theorem.  

 Now, we are left to prove 2nd condition i.e. 

 N(T) = span ({en }∞
n=1)┴ ,     Firstly, Let xЄ N(T) Tx = 0  

Now n < en, x > = <n en, x> = <Ten,x > = < en, Tx > = 0  

 x  en  x  span ({en}∞
n=1) 

 N (T)  span ({en}∞
n=1)  ……………………….. (3)  

Conversely Let x  span ({en}∞
n=1) 
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then x  Hn  n and because || T│HN ||  | n | 

we have ║ Tx║  |n |║ x ║and Lt  n = 0 as n→∞ 

Hence ║ Tx ║ = 0 i.e. x  N (T)  

Hence span ({en}∞
n=1) = N (T) ……………………..(4) 

Combining  ( 3 ) and (4),we get 

 N (T) = span ({en}∞
n=1)  . i.e., condition is fulfilled. 

 CONCLUSION  

 we basically discussed the spectral representation of compact self adjoint 

operators. The significance and usefulness of this result lies in the fact that we 

can represent T (),  H in a simple and unique form. Sometimes it is possible 

and convenient to break up a vector space into special disjoint subspaces. So, 

we are writing H as, H = Y + Y┴ , where we assume Y = span ({en}N
n=1 ) 

              We then proved kernel of T as orthogonal of the set which we proved as 

combination of the orthonormal elements, that is, we  presented  Hilbert space 

as                

                                      H = Y + N (T)  

 Motivated for the application of this theorem, we here tried to write   v Є H   in 

the form  = ( αn en) + Z,  

Where n  k, Z  N(T)  and for each such vector ,we have 
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                                   T () =  λnαnen 

which is required representation and this presentation is unique. 
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